博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ML-DL-各种资源汇总
阅读量:5168 次
发布时间:2019-06-13

本文共 2475 字,大约阅读时间需要 8 分钟。

1.Used Libraries, Datasets, and Models

1.1 Libraries

  1. TensorFlow (from Google): 
  2. Theano (from U Montreal): 
  3. Caffe (from Berkeley): 
  4. Torch (from Facebook): 
  5. Nervana Graph (from Intel):
  6. MXNet (from Amazon): 
  7. Deeplearning4j (from Skymind): 
  8. CNTK (from Microsoft): 
  9. Keras (high-level API for both TensorFlow and Theano): 
  10. TensorFlow-Slim (high-level API for TensorFlow)
  11. Various other high-level APIs for Tensorflow, like TFLearn, TensorLayer
  12. Spark + Caffe and/or TensorFlow:
  13. SparkNet with Caffe as backend for each worker (from Berkeley):

1.2 Datasets

  1. ImageNet (large scale image-classification; pre-training)
  2. MS COCO (large scale object bounding box detection, image captioning, visual question answering)
  3. Cifar10 (small scale image classification)
  4. MNIST(small scale digits classification)
  5. Visual Genome  (large scale multi-task image understanding)

1.3 Models Structure

  1. Inception
  2. ResNet
  3. VGG
  4. AlexNet
  5. MobileNet
  6. SqueezeNet

1.3 Available pre-trained model

  1. tensorflow / slim 
    1)  (inceptionv1-v4; resnet50, 101, 152; vgg16,19; inception-resnet-v2)
  2. caffe 
    1)  (model zoo)
    2)  (resnet, inception-v1, vgg)
  3. keras
    1)  (xception, vgg16, vgg19, resnet50, inceptionv3, mobilenet)
  4. mxnet
    1) model galaxy 

2. TensorFlow Tips

2.1 Using GPUs

By default, TensorFlow eats all your GPUs' memory (Yes, every single bit of them!), even when you explicitly specify which gpu(s) to use. To limit this "intended" behavior, one needs to set GPUOptions to your session, and we recommend the following. One can refer to  for the rationale.

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0., allow_growth=True)
config=tf.ConfigProto(gpu_options=gpu_options, 
)

sess = tf.Session(config=config, <your other session settings>)

with sess.as_default():

    <rest of session code>

The above has been tested under TF version r0.12 on DL Workstation 1, 2, 3. The testing code is  (tested with both single-gpu training and multi-gpu training). Note that the code is different from the example provided in TF , and it is modified by us to be compatible with r0.12.

As of 2017/01/11, experimenting such GPU setting with Keras using TF backend is inconclusive. Further investigation is needed.

2.1.1 To limit the GPU to use

Use CUDA_VISIBLE_DEVICES, see 

$ CUDA_VISIBLE_DEVICES=0 python my_script.py  # Uses GPU 0.

$ CUDA_VISIBLE_DEVICES=1 python my_script.py  # Uses GPU 1.

$ CUDA_VISIBLE_DEVICES=2,3 python my_script.py  # Uses GPUs 2 and 3.

 

2.2 Upgrade to TF1.0

 

转载于:https://www.cnblogs.com/Anita9002/p/7753546.html

你可能感兴趣的文章
自动分割mp3等音频视频文件的脚本
查看>>
判断字符串是否为空的注意事项
查看>>
布兰诗歌
查看>>
(转)Tomcat 8 安装和配置、优化
查看>>
(转)Linxu磁盘体系知识介绍及磁盘介绍
查看>>
命令ord
查看>>
Sharepoint 2013搜索服务配置总结(实战)
查看>>
博客盈利请先考虑这七点
查看>>
使用 XMLBeans 进行编程
查看>>
写接口请求类型为get或post的时,参数定义的几种方式,如何用注解(原创)--雷锋...
查看>>
跨域问题整理
查看>>
[Linux]文件浏览
查看>>
获取国内随机IP的函数
查看>>
今天第一次写博客
查看>>
江城子·己亥年戊辰月丁丑日话凄凉
查看>>
Spring Mvc模式下Jquery Ajax 与后台交互操作
查看>>
(转)matlab练习程序(HOG方向梯度直方图)
查看>>
『Raid 平面最近点对』
查看>>
【ADO.NET基础-数据加密】第一篇(加密解密篇)
查看>>
STL中的优先级队列priority_queue
查看>>